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> New Technology: Hybrid MR-Linac Systems

> 5 active Sites in Germany
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AI in MRgRT

Challenges for providers:

= MRI environment — not all patients are suitable

Adaptive workflows

Close interdisciplinary teamwork required

Longer treatment times

High costs
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Radiotherapy and Oncology 159 (2021) 146-154
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AI I n M Rg R I Original Article

ESTRO-ACROP recommendations on the clinical implementation of m)
hybrid MR-linac systems in radiation oncology St
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AI i n M Rg RT First prospective clinical evaluation of feasibility and patient
Patient acceptance

acceptance of magnetic resonance-guided radiotherapy in Germany
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Challenges for patients:

= 65% complaint rate of at least 1 item
» Cold temperature
~ Noise
~ Duration of treatment
~ Paresthesia

» Uncomfortable positioning
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Role of On-Table Plan Adaptation in MR-Guided
Ablative Radiation Therapy for Central Lung
Tumors

Tobias Finazzi, MD, Miguel A. Palacios, PhD,

- Femke 0.B. Spoelstra, MD, PhD, Cornelis J.A. Haasbeek, MD, PhD,
AI I n M R R I Anna M.E. Bruynzeel, MD, PhD, Ben J. Slotman, MD, PhD,
Frank J. Lagerwaard, MD, PhD, and Suresh Senan, MRCP, FRCR, PhD

Department of Radiation Oncology, Amsterdam University Medical Centers, Vrije Universiteit
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Received Dec 10, 2018. Accepted for publication Mar 20, 2019.

Positioning Online Treatment
and imaging adaptation delivery
A A A
[ | | \

Boolean operations (min)
RT incl. cine imaging (min)

Positioning (min) » Matching (min)

Median:

> 3DMR Contouring (min)

Physics QA (min)
Plan adaptation (min)

m Positioning = Matching m Contouring m Boolean operations ~ Plan adaptation = Physics QA = RT incl. cine imagigg) Total workflow
Median 9 min 6 min 6 min 2 min 2 min 1 min 18 min 48 min




MRgRT workflow

Baseline
treatment
optimization

In-room MRI

Automatic segmentation
Synthetic CT generation

Dose prediction and automatic planning
Motion tracking
Outcome prediction

Courtesy of G. Landry

Treatment
optimization

Treatment
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Follow up




MRgRT workflow

Baseline
treatment

In-room MRI

optimization

Automatic segmentation

Synthetic CT generation

Dose prediction and automatic planning
Motion tracking

Outcome prediction

Courtesy of G. Landry

Treatment
optimization

Treatment

KLINIKUM

Follow up




KLINIKUM

Automatic segmentation




Automatic segmentation
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Advances in Auto-Segmentation L)
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Deep learning auto-segmentation algorithms
have quickly become the state-of-the-art in
medical image segmentation

some applications produce better results than the
measured inter- and intraobserver contouring
variability



Automatic segmentation

OARs and target volume
o " " \

OARs
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DeepMedic

Clinical

Clinical implementation of MRI-based

organs-at-risk auto-segmentation with

convolutional networks for prostate
radiotherapy

A C . 2 2¢ ~ ~ C: 1 v/ 2.
Mark H. F. Savenije'~ t Matteo Maspero '~ ! Gonda G. Sikkes', Jochem R. N. van der Voort van 2,
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Automatic segmentation is:

Less intra- and
interobserver variability
Reduce manual

Online Adaptation

Time efficient
Improve consistency a
reproducibility

1‘/
segmentation time during U

a
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MRgRT workflow
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Synthetic CT generation

Loss S

—>| U-Net Target
. input
e
Neppl, Landry, et al. Acta Oncol 2019 |2
Spadea et al. IJROBP 2019 Slels
¥ 126 128
: :|t! 256 256 512 256
:'Itltl ;—Ifltl =>conv 3x3, ReLU
=il o o s s 1024 512‘ 'D‘ - copy and crop
== ¢ - ¥ max pool 2x2
o e sCT

generic U-net for illustration purposes

@ynthetic CT Generation is: \
» Time saving /|'~
> Less radiation exposure Uv
> Allows for a MR-only :

workflow
> Reduces uncertainties of

K image registration

Courtesy of G. Landry
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Automatic planning

First experience of autonomous, un-supervised treatment planning 1))
integrated in adaptive MR-guided radiotherapy and delivered to a |2z
patient with prostate cancer

Luise A. Kiinzel **, Marcel Nachbar®, Markus Hagmiiller, Cihan Gani®, Simon Boeke ", Daniel Zips "<,
Daniela Thorwarth **

Autonomous, un-supervised planning pipeline

PTV60

PTV57.6
CTV57.6
Rectum

Bladder

Seminal vesicles
Femoral head right
Femoral head left

‘ CT-Simulation CT + structure set

|

Autonomous
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Automatic planning

Original Article

First experience of autonomous, un-supervised treatment planning 1))
integrated in adaptive MR-guided radiotherapy and delivered to a \W‘
patient with prostate cancer
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Automatic planning
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Original Article

First experience of autonomous, un-supervised treatment planning
integrated in adaptive MR-guided radiotherapy and delivered to a \
patient with prostate cancer
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Autonomous, un-supervised planning pipeline

CT + structure set

‘ CT-Simulation

Online adaptive MRgRT

automatic MRgRT PIan’
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Checkpoint for human
interaction
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Quality Assurance for Al-Based Systems: Overview and
Challenges (Introduction to Interactive Session)

Ste pw i se i m p I eme nta t i (0] ] Michael Felderer & & Rudolf Ramler
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Phase 4: Fully automated.
Humans only define their goal, the right means as well as execution of

those is performed by computers.

Phase 3: Partly automated.
Systems take over simple tasks and actively prevent common errors that

would otherwise require human intervention.

Phase 2: Assistance Function.
Systems provide guidance and passively
prevent common errors.

Phase 1: Decoupling.
Manual choice of means,
indirect link to physical world.

Phase 0: It works.
Manual choice of means,
usually physical work.

Fig. 1. Automation phases



Article

Architectural Framework for Exploring Adaptive
Human-Machine Teaming Options in Simulated

- L ™ D . E .
StepW|Se |mp|ementat|on ynamic Environments

Azad M. Madni * and Carla C. Madni

= Open Questions:

= Can Al replace humans? Is Al a threat to human jobs?
Changing in roles: from operator to monitor/supervisor
Managaging of automation

= Will AI impact our education/training?
Reduction of human skills/competencies —
human interventions still possible?

= Can we trust and rely on AI?

Transparency in Al operations affects human trust

Over-reliance vs under-reliance
QA

= Is AI a tool or a teammate?

Complex human-machine interaction



Article
Architectural Framework for Exploring Adaptive

. Human-Machine Teaming Options in Simulated
Human-Machine Teams Dynamic Environments

Azad M. Madni * and Carla C. Madni

= Shared task execution

bothgoodl

machine supernior
human to human
poor at,
machine
good

human superior
to machine




Human-Machine Teaming

Decision making

Risk level

CLOSED

Sequential Machine-Human
Al Systems

Machines perform most of
the tasks independently, with
humans serving as sentinels.

Decision making complexity

INNoVATION STRATeGIES

OPEN

Human-Based Al Systems

Humans and machines interact
through continuous loops.
Humans act as experts and
have the final authority.

Machine-Based
Al Systems

Machines perform tasks
independently, with humans
playing only supervisory
foreman roles.

Cyclic Machine-Human
Al Systems

Authority cycles back and
forth from machine to human.
Humans act as coaches for
the Al system, enhancing

the learning.

What does the human

face of Al look like?

By Maria Jesus Saenz, Elena Revilla and Cristina Simon
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MRgRT workflow

Follow up

Baseline

Treatment

treatment
optimization

In-room MRI

Treatment

optimization

Automatic segmentation

Synthetic CT generation
Dose prediction and automatic planning

T

Outcome prediction

Courtesy of G. Landry
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o u tco m e p re d I Ct I o n Reinventing radiation therapy with machine learning and imaging bio-
markers (radiomics): State-of-the-art, challenges and perspectives

Laurent Dercle™', Theophraste Henry™*', Alexandre Carré™, Nikos Paragios®, Eric Deutsch™,
Charlotte Robert™®

Pre-RTCT/MRI/PET / Per-RT CT/MRI/PET \ Post-RT CT/MRI/PET

Treatment
planning

/Predictive Models:
> Early treatment

v
response
prediction

on

> Toxicity predicti

-

Pre-RT radiomics:

Delta radiemics:

» Segmentation/voxel-
based classification:
Target Volume

» Segmentation/voxel-based

classification for RT Classification: RT toxicities

vs. Tumor progression

delineation, sub-volumes : treatment adaptation
definition  for  dose » Response prediction
painting implementation o = Pregnecic

> Response prediction . » Toxicity prediction

» Prognosis !

> Toxicity prediction —— \ S— /




RESEARCH Open Access

Applicability of a pathological complete o
response magnetic resonance-based radiomics
model for locally advanced rectal cancer

in intercontinental cohort

Luca Boldrini', Jacopo Lenkowicz', Lucia Clara Orlandini?, Gang Yin? Davide Cusumano', Giuditta Chiloiro',
Nicola Dinapoli', Qian Peng” ®, Calogero Casa', Maria Antonietta Gambacorta', Vincenzo Valentini' and

Outcome prediction

Jinyi Lang?
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Fig. 1 ROC curve obtained for the entire cohort of intercontinenta
patients

\

FIGURE 1 | Gross tumour volum (GTV) delineated at the treatment simulation (A) and at the difierent treatment fractions selected for the delta-radiomics analysis,
corresponding to BED levels of 13 Gy (B), 26 Gy (C), 40 Gy (D), 54 Gy (E) and 67 Gy (F). The GTV is represented by the red contour.
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Outcome prediction

A B
Dose response (TCP/NTCP) = Patient 1 Patient 2 Patient 3
1 i Tumour control . u
Imaging i # Normal tissue
- ! toxicity |
B I O m a rke rS Complication-free -~
- control of disease 4 -
i i\
P L
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g \
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\
T | e e e )
Radiation dose (Gy)
Legend Figure 1

A) The classical tumour control probability (TCP) and normal tissue complication probability (NTCP) curves.-The aim is to shift
the tumour control curve left and the normal tissue curve right.

B) Future individual dose response curve, combing GARD and susceptibility to radiotoxicity to predict the benefit of radiation
for an individual patient. Patient 1- tumour and normal tissue are sensitive to radiation but therapeutic window is narrow.
Patient 2- Tumour is relatively sensitive and high normal tissue tolerance resulting in a very wide therapeutic window.

C I | n | Ca I/ Patient 3- Tumour is radioresistant with virtually no therapeutic window. Poortmans

Morphological Feature Quantification of High Attention Regions
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AI in cancer therapy

« AI can support MRgRT:
> Al is a tool & can increase quality, standardization and acceleration of
the different treatment steps
» Al algorithms are applicable to almost all aspects of the MRgRT workflow
» Autosegmentation is one of the most visible applications

» Al can provide predictive and prognostic information on outcome and FU
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AI in cancer therapy
The way forward

Human + manual
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AI in cancer therapy

Human networks +
automation

The way forward

Human + manual
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Thank you

For your attention!




